Copied to
clipboard

G = C22×C22≀C2order 128 = 27

Direct product of C22 and C22≀C2

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C22×C22≀C2, C262C2, C2416D4, C231C24, C2411C23, C2510C22, C22.20C25, (C2×C4)⋊1C24, (D4×C23)⋊9C2, C2310(C2×D4), C2.4(D4×C23), (C2×D4)⋊13C23, C223(C22×D4), C22⋊C414C23, (C22×C4)⋊11C23, (C23×C4)⋊27C22, (C22×D4)⋊56C22, (C22×C22⋊C4)⋊26C2, (C2×C22⋊C4)⋊80C22, SmallGroup(128,2163)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22×C22≀C2
C1C2C22C23C24C25C26 — C22×C22≀C2
C1C22 — C22×C22≀C2
C1C24 — C22×C22≀C2
C1C22 — C22×C22≀C2

Generators and relations for C22×C22≀C2
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, gcg=ce=ec, cf=fc, de=ed, gdg=df=fd, ef=fe, eg=ge, fg=gf >

Subgroups: 4076 in 2272 conjugacy classes, 556 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2×C22⋊C4, C22≀C2, C23×C4, C22×D4, C22×D4, C25, C25, C25, C22×C22⋊C4, C2×C22≀C2, D4×C23, C26, C22×C22≀C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C25, C2×C22≀C2, D4×C23, C22×C22≀C2

Smallest permutation representation of C22×C22≀C2
On 32 points
Generators in S32
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 4)(2 3)(5 7)(6 8)(9 23)(10 24)(11 13)(12 14)(15 18)(16 17)(19 21)(20 22)(25 27)(26 28)(29 31)(30 32)
(1 5)(2 6)(3 8)(4 7)(9 14)(10 13)(11 24)(12 23)(15 28)(16 27)(17 25)(18 26)(19 31)(20 32)(21 29)(22 30)
(1 23)(2 24)(3 10)(4 9)(5 12)(6 11)(7 14)(8 13)(15 16)(17 18)(19 20)(21 22)(25 26)(27 28)(29 30)(31 32)
(1 13)(2 14)(3 12)(4 11)(5 10)(6 9)(7 24)(8 23)(15 31)(16 32)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)
(1 24)(2 23)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(15 26)(16 25)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)
(1 20)(2 19)(3 21)(4 22)(5 16)(6 15)(7 17)(8 18)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(23 29)(24 30)

G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,4)(2,3)(5,7)(6,8)(9,23)(10,24)(11,13)(12,14)(15,18)(16,17)(19,21)(20,22)(25,27)(26,28)(29,31)(30,32), (1,5)(2,6)(3,8)(4,7)(9,14)(10,13)(11,24)(12,23)(15,28)(16,27)(17,25)(18,26)(19,31)(20,32)(21,29)(22,30), (1,23)(2,24)(3,10)(4,9)(5,12)(6,11)(7,14)(8,13)(15,16)(17,18)(19,20)(21,22)(25,26)(27,28)(29,30)(31,32), (1,13)(2,14)(3,12)(4,11)(5,10)(6,9)(7,24)(8,23)(15,31)(16,32)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25), (1,24)(2,23)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(15,26)(16,25)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32), (1,20)(2,19)(3,21)(4,22)(5,16)(6,15)(7,17)(8,18)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(23,29)(24,30)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,4)(2,3)(5,7)(6,8)(9,23)(10,24)(11,13)(12,14)(15,18)(16,17)(19,21)(20,22)(25,27)(26,28)(29,31)(30,32), (1,5)(2,6)(3,8)(4,7)(9,14)(10,13)(11,24)(12,23)(15,28)(16,27)(17,25)(18,26)(19,31)(20,32)(21,29)(22,30), (1,23)(2,24)(3,10)(4,9)(5,12)(6,11)(7,14)(8,13)(15,16)(17,18)(19,20)(21,22)(25,26)(27,28)(29,30)(31,32), (1,13)(2,14)(3,12)(4,11)(5,10)(6,9)(7,24)(8,23)(15,31)(16,32)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25), (1,24)(2,23)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(15,26)(16,25)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32), (1,20)(2,19)(3,21)(4,22)(5,16)(6,15)(7,17)(8,18)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(23,29)(24,30) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,4),(2,3),(5,7),(6,8),(9,23),(10,24),(11,13),(12,14),(15,18),(16,17),(19,21),(20,22),(25,27),(26,28),(29,31),(30,32)], [(1,5),(2,6),(3,8),(4,7),(9,14),(10,13),(11,24),(12,23),(15,28),(16,27),(17,25),(18,26),(19,31),(20,32),(21,29),(22,30)], [(1,23),(2,24),(3,10),(4,9),(5,12),(6,11),(7,14),(8,13),(15,16),(17,18),(19,20),(21,22),(25,26),(27,28),(29,30),(31,32)], [(1,13),(2,14),(3,12),(4,11),(5,10),(6,9),(7,24),(8,23),(15,31),(16,32),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25)], [(1,24),(2,23),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(15,26),(16,25),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32)], [(1,20),(2,19),(3,21),(4,22),(5,16),(6,15),(7,17),(8,18),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(23,29),(24,30)]])

56 conjugacy classes

class 1 2A···2O2P···2AM2AN2AO2AP2AQ4A···4L
order12···22···222224···4
size11···12···244444···4

56 irreducible representations

dim111112
type++++++
imageC1C2C2C2C2D4
kernelC22×C22≀C2C22×C22⋊C4C2×C22≀C2D4×C23C26C24
# reps13243124

Matrix representation of C22×C22≀C2 in GL6(ℤ)

-100000
010000
00-1000
000-100
000010
000001
,
-100000
0-10000
001000
000100
0000-10
00000-1
,
100000
0-10000
001000
000-100
000010
0000-1-1
,
-100000
0-10000
001000
000-100
000010
000001
,
100000
010000
00-1000
000-100
0000-10
00000-1
,
100000
010000
00-1000
000-100
000010
000001
,
100000
0-10000
000-100
00-1000
0000-1-2
000001

G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,-2,1] >;

C22×C22≀C2 in GAP, Magma, Sage, TeX

C_2^2\times C_2^2\wr C_2
% in TeX

G:=Group("C2^2xC2^2wrC2");
// GroupNames label

G:=SmallGroup(128,2163);
// by ID

G=gap.SmallGroup(128,2163);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*c*g=c*e=e*c,c*f=f*c,d*e=e*d,g*d*g=d*f=f*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽