Copied to
clipboard

G = C22xC22wrC2order 128 = 27

Direct product of C22 and C22wrC2

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C22xC22wrC2, C26:2C2, C24:16D4, C23:1C24, C24:11C23, C25:10C22, C22.20C25, (C2xC4):1C24, (D4xC23):9C2, C23:10(C2xD4), C2.4(D4xC23), (C2xD4):13C23, C22:3(C22xD4), C22:C4:14C23, (C22xC4):11C23, (C23xC4):27C22, (C22xD4):56C22, (C22xC22:C4):26C2, (C2xC22:C4):80C22, SmallGroup(128,2163)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22xC22wrC2
C1C2C22C23C24C25C26 — C22xC22wrC2
C1C22 — C22xC22wrC2
C1C24 — C22xC22wrC2
C1C22 — C22xC22wrC2

Generators and relations for C22xC22wrC2
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, gcg=ce=ec, cf=fc, de=ed, gdg=df=fd, ef=fe, eg=ge, fg=gf >

Subgroups: 4076 in 2272 conjugacy classes, 556 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2xC4, C2xC4, D4, C23, C23, C22:C4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C24, C2xC22:C4, C22wrC2, C23xC4, C22xD4, C22xD4, C25, C25, C25, C22xC22:C4, C2xC22wrC2, D4xC23, C26, C22xC22wrC2
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22wrC2, C22xD4, C25, C2xC22wrC2, D4xC23, C22xC22wrC2

Smallest permutation representation of C22xC22wrC2
On 32 points
Generators in S32
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 4)(2 3)(5 7)(6 8)(9 23)(10 24)(11 13)(12 14)(15 18)(16 17)(19 21)(20 22)(25 27)(26 28)(29 31)(30 32)
(1 5)(2 6)(3 8)(4 7)(9 14)(10 13)(11 24)(12 23)(15 28)(16 27)(17 25)(18 26)(19 31)(20 32)(21 29)(22 30)
(1 23)(2 24)(3 10)(4 9)(5 12)(6 11)(7 14)(8 13)(15 16)(17 18)(19 20)(21 22)(25 26)(27 28)(29 30)(31 32)
(1 13)(2 14)(3 12)(4 11)(5 10)(6 9)(7 24)(8 23)(15 31)(16 32)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)
(1 24)(2 23)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(15 26)(16 25)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)
(1 20)(2 19)(3 21)(4 22)(5 16)(6 15)(7 17)(8 18)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(23 29)(24 30)

G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,4)(2,3)(5,7)(6,8)(9,23)(10,24)(11,13)(12,14)(15,18)(16,17)(19,21)(20,22)(25,27)(26,28)(29,31)(30,32), (1,5)(2,6)(3,8)(4,7)(9,14)(10,13)(11,24)(12,23)(15,28)(16,27)(17,25)(18,26)(19,31)(20,32)(21,29)(22,30), (1,23)(2,24)(3,10)(4,9)(5,12)(6,11)(7,14)(8,13)(15,16)(17,18)(19,20)(21,22)(25,26)(27,28)(29,30)(31,32), (1,13)(2,14)(3,12)(4,11)(5,10)(6,9)(7,24)(8,23)(15,31)(16,32)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25), (1,24)(2,23)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(15,26)(16,25)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32), (1,20)(2,19)(3,21)(4,22)(5,16)(6,15)(7,17)(8,18)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(23,29)(24,30)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,4)(2,3)(5,7)(6,8)(9,23)(10,24)(11,13)(12,14)(15,18)(16,17)(19,21)(20,22)(25,27)(26,28)(29,31)(30,32), (1,5)(2,6)(3,8)(4,7)(9,14)(10,13)(11,24)(12,23)(15,28)(16,27)(17,25)(18,26)(19,31)(20,32)(21,29)(22,30), (1,23)(2,24)(3,10)(4,9)(5,12)(6,11)(7,14)(8,13)(15,16)(17,18)(19,20)(21,22)(25,26)(27,28)(29,30)(31,32), (1,13)(2,14)(3,12)(4,11)(5,10)(6,9)(7,24)(8,23)(15,31)(16,32)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25), (1,24)(2,23)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(15,26)(16,25)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32), (1,20)(2,19)(3,21)(4,22)(5,16)(6,15)(7,17)(8,18)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(23,29)(24,30) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,4),(2,3),(5,7),(6,8),(9,23),(10,24),(11,13),(12,14),(15,18),(16,17),(19,21),(20,22),(25,27),(26,28),(29,31),(30,32)], [(1,5),(2,6),(3,8),(4,7),(9,14),(10,13),(11,24),(12,23),(15,28),(16,27),(17,25),(18,26),(19,31),(20,32),(21,29),(22,30)], [(1,23),(2,24),(3,10),(4,9),(5,12),(6,11),(7,14),(8,13),(15,16),(17,18),(19,20),(21,22),(25,26),(27,28),(29,30),(31,32)], [(1,13),(2,14),(3,12),(4,11),(5,10),(6,9),(7,24),(8,23),(15,31),(16,32),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25)], [(1,24),(2,23),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(15,26),(16,25),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32)], [(1,20),(2,19),(3,21),(4,22),(5,16),(6,15),(7,17),(8,18),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(23,29),(24,30)]])

56 conjugacy classes

class 1 2A···2O2P···2AM2AN2AO2AP2AQ4A···4L
order12···22···222224···4
size11···12···244444···4

56 irreducible representations

dim111112
type++++++
imageC1C2C2C2C2D4
kernelC22xC22wrC2C22xC22:C4C2xC22wrC2D4xC23C26C24
# reps13243124

Matrix representation of C22xC22wrC2 in GL6(Z)

-100000
010000
00-1000
000-100
000010
000001
,
-100000
0-10000
001000
000100
0000-10
00000-1
,
100000
0-10000
001000
000-100
000010
0000-1-1
,
-100000
0-10000
001000
000-100
000010
000001
,
100000
010000
00-1000
000-100
0000-10
00000-1
,
100000
010000
00-1000
000-100
000010
000001
,
100000
0-10000
000-100
00-1000
0000-1-2
000001

G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,-2,1] >;

C22xC22wrC2 in GAP, Magma, Sage, TeX

C_2^2\times C_2^2\wr C_2
% in TeX

G:=Group("C2^2xC2^2wrC2");
// GroupNames label

G:=SmallGroup(128,2163);
// by ID

G=gap.SmallGroup(128,2163);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*c*g=c*e=e*c,c*f=f*c,d*e=e*d,g*d*g=d*f=f*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<